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 Th e metacommunity framework is a powerful platform for evaluating patterns of species distribution in geographic or 
environmental space. Idealized patterns (checkerboard, Clementsian, evenly spaced, Gleasonian and nested distributions) 
give the framework shape. Each pattern represents an area in a multidimensional continuum of metacommunity struc-
tures; however, the current approach to analysis of spatial structure of metacommunities is incomplete. To address this, 
we describe additional non-random structures and illustrate how they may be discerned via objective criteria. First, we 
distinguish three distinct forms of species loss in nested structures, which should improve identifi cation of structuring 
mechanisms for nested patterns. Second, we defi ne six quasi-structures that are consistent with the conceptual underpin-
nings of Clementsian, Gleasonian, evenly spaced and nested distributions. Finally, we demonstrate how combinations 
of structures at smaller spatial extents may aggregate to form Clementsian structure at larger extents. Th ese refi nements 
should facilitate the identifi cation of best-fi t patterns, associated structuring mechanisms, and informative scales of analysis 
and interpretation. Th is conceptual and analytical framework may be applied to network properties within communities 
(i.e. structure of interspecifi c interactions) and has broad application in ecology and biogeography.   
 Th e metacommunity concept substantively advanced under-
standing of meso- and large-scale ecology as well as the 
distribution of organisms along environmental gradients 
(Holyoak et al. 2005). Two interrelated and complementary 
avenues of investigation have been followed to understand 
spatial variation in species composition: one focusing on 
mechanism (Cottenie 2005), and one focusing on pattern 
(Leibold and Mikkelson 2002). Th e mechanistic approach 
to understand variation in site composition considers the 
roles of patch dynamics, species sorting, mass eff ects and 
neutrality (Leibold et al. 2004, Holyoak et al. 2005). In 
contrast, the pattern-based approach evaluates characteris-
tics of species distributions along environmental gradients 
that emerge as a result of those mechanisms and manifest as 
particular metacommunity structures (e.g. random, check-
erboard, nested, evenly-spaced, Gleasonian, or Clementsian 
patterns; sensu Leibold and Mikkelson 2002). To date, 
research largely has focused on one or the other of these 
approaches, with little coupling of mechanism and structure. 
Development of a more comprehensive framework for the 
evaluation of spatial structures should facilitate the integra-
tion of these complementary approaches. 

 Several conceptual models of spatial structure have 
been developed to describe patterns of species distribution. 
Clements (1916) described an idealized metacommunity 
structure comprising communities with distinctive species 
compositions based on shared evolutionary history and 
inter-dependent ecological relationships, resulting in coin-
cident range boundaries and compositional unity along dif-
ferent portions of the environmental gradient. In contrast, 
Gleason (1926) described a structure based on idiosyncratic 
species-specifi c responses to the environment, with coexis-
tence resulting from chance similarities in requirements or 
tolerances. In situations where strong interspecifi c compe-
tition exists, tradeoff s in competitive ability may manifest 
as distributions that are more evenly spaced along environ-
mental gradients than expected by chance (Tilman 1982). 
Alternatively, strong competition may result in checkerboard 
patterns produced by pairs of species with mutually exclusive 
ranges (Diamond 1975). If mutually exclusive pairs occur at 
random with respect to other such pairs, checkerboards will 
manifest at the metacommunity level. Finally, species-poor 
communities may form nested subsets of increasingly more 
species-rich communities (Patterson and Atmar 1986), with 
predictable patterns of species loss associated with variation 
in species-specifi c characteristics (e.g. dispersal ability, 
habitat specialization, tolerance to abiotic conditions). 

 Early research on spatial structures primarily was descrip-
tive (Clements 1916, Gleason 1926, Whittaker 1956, 1960, 
1965, Terborgh 1971, 1977). Because analytical approaches 
did not exist to distinguish among hypothetical patterns, 
controversies about the ubiquity of particular structures 



remained unresolved, with only modest advancement of eco-
logical understanding. More recently, a number of quantita-
tive tests were developed that distinguish between nested and 
non-nested structures (Patterson and Atmar 1986, Wright 
and Reeves 1992, Wright et al. 1998, Jonsson 2001, Ulrich 
et al. 2009). Importantly, these approaches are restricted to 
analyses along gradients of richness and do not distinguish 
among non-random patterns that are not nested. In con-
trast, Leibold and Mikkelson (2002) developed a rigorous 
quantitative approach to simultaneously distinguish among 
multiple hypothetical patterns of species distribution based 
on an empirical species incidence matrix. Th is approach 
combines evaluation of three elements of metacommunity 
structure  –  coherence, range turnover and range boundary 
clumping  –  to identify which idealized structure (i.e. check-
erboard, nested, Clementsian, Gleasonian, evenly spaced, 
or random distributions) most accurately characterizes an 
empirical metacommunity. Each non-random structure 
assumes that species distributions are molded by biotic inter-
actions (e.g. competition, habitat associations) or responses 
to abiotic factors (e.g. temperature, rainfall) that vary among 
sites that constitute an environmental gradient. Importantly, 
the theoretical underpinnings of each idealized structure are 
unique (Clements 1916, Gleason 1926, Diamond 1975, 
Tilman 1982, Patterson and Atmar 1986), allowing analyses 
to simultaneously evaluate multiple hypotheses associated 
with spatial structure of a metacommunity. 

 Despite the ability of Leibold and Mikkelson ’ s (2002) 
approach to identify emergent spatial structures in a meta-
community, it has been little used and researchers frequently 
fail to take advantage of its most powerful aspect, determi-
nation of the best-fi t structure and identifi cation of asso-
ciated structuring mechanisms that are consistent with its 
theoretical underpinnings (Zimmerman 2006, Bloch et al. 
2007, Werner et al. 2007, Barone et al. 2008). Th ree reasons 
likely exist. First, the six idealized structures do not describe 
all possible combinations of coherence, range turnover, and 
boundary clumping. Second, these idealized structures rep-
resent only portions of a multidimensional continuum of 
structural attributes that characterize empirical metacom-
munities. Th ird, spatial scale of analysis often is ignored; 
thereby, confounding attempts to identify environmental 
gradients that mold metacommunity structure or mecha-
nisms that operate at particular spatial scales. From a diff er-
ent perspective, Lewinsohn et al. (2006) recognized each of 
these problems with current approaches to identify spatial 
structures along gradients, as well as the need for a  “ com-
prehensive procedure to address the full range of possible 
patterns. ”  

 We ameliorate this situation by introducing three 
conceptual refi nements for analyses of metacommunity 
structure (sensu Leibold and Mikkelson 2002), thereby 
developing a comprehensive framework for the evaluation 
of structures along environmental gradients. Our goals are 
four-fold. First, we briefl y describe the conceptual approach 
of Leibold and Mikkelson (2002). Second, we demonstrate 
how analysis of boundary clumping can distinguish among 
three distinct forms of species loss in nested subsets, a 
particularly common structure along richness gradients. 
Th ird, we describe six quasi-structures that are conceptually 
related to six of the idealized structures. Finally, we outline 
a hierarchical approach for evaluating metacommunity 
structure at multiple spatial extents, an approach that is 
particularly useful for metacommunities with distinc-
tive groups of species along portions of an environmental 
gradient (i.e. compartments).  

 Conceptual framework and idealized structures 

 A fundamental principle in ecology is that the abundances 
of species are Gaussian: modal in form with continuous 
distributions with respect to an underlying environmental 
gradient (Gauch and Whittaker 1972, Whittaker 1975, 
Austin 1985). More specifi cally, if a species can occur at 
values of x 1  and x 2  along some gradient, then it also should 
be able to occur at all values of the gradient between x 1  and 
x 2 . Consequently, species should occupy a coherent range 
of sites along environmental gradients in metacommunities 
(i.e. no holes should exist in the n-dimensional hypervolume 
that defi nes the fundamental niches of species). For an entire 
metacommunity to exhibit coherence, the ranges of a major-
ity of species must be molded in this fashion and in response 
to the same environmental gradient. Nonetheless, the nature 
of responses to the gradient may diff er among species (i.e. the 
modes in abundance or extents of occurrence diff er among 
species). If species, as a group, do not respond to the same 
environmental gradient, distributions will not form a coher-
ent structure (Leibold and Mikkelson 2002). Th is does not 
necessarily mean that species occur at random. If species dis-
tributions are associated with diff erent gradients, they would 
fail to exhibit coherence along a single common gradient. 
Because metacommunity analyses generally are restricted 
to a group of co-occurring species defi ned by taxon (assem-
blages), function (guilds), or both (ensembles; Fauth et al. 
1996), and because of ecological similarities among members 
of such restricted groups, coherence likely is a pervasive attri-
bute of well sampled metacommunities that span modest to 
large environmental gradients. Indeed, the vast majority of 
evaluated metacommunities exhibited coherence (Kusch 
et al. 2005, Zimmerman 2006, Bloch et al. 2007, Burns 
2007, Werner et al. 2007, Barone et al. 2008, Presley et al. 
2009, Presley and Willig 2010, Presley et al. unpubl.), includ-
ing 24 of 35 metacommunities in Leibold and Mikkelson 
(2002). Most non-coherent metacommunities have had few 
species ( �  10), few sites, or both; thereby, providing little 
statistical power to adequately evaluate coherence along a 
gradient via a randomization approach. 

 Prior to analysis of structure, a site-by-species incidence 
matrix is ordered according to the primary axis extracted via 
reciprocal averaging (i.e. simple correspondence analysis), 
arguably the best indirect ordination procedure (Gauch et al. 
1977, Pielou 1984) to discern variation in response to latent 
environmental gradients (i.e. variation in unmeasured envi-
ronmental characteristics). Reciprocal averaging maximizes 
the proximity of species with similar distributions as well as 
the proximity of sites with similar species compositions. In 
doing so, reciprocal averaging maximizes the coherence of 
species distributions and the coherence of community com-
positions. Th is reorganization of data matrices is analogous 
to species-packing algorithms that produce maximal nest-
edness in an empirical metacommunity prior to quantify-
ing the number of deviations from perfect nestedness as a 
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measure of signifi cance (Patterson and Atmar 1986). Because 
the order of sites and species in matrices aff ect the magnitude 
of metrics that represent deviations from an idealized state 
(e.g. perfect coherence), a standardized approach to order 
sites and species is necessary for a reliable statistical test via 
randomization procedures. 

 Many null model algorithms are available to generate 
null distributions for statistical evaluations of metrics that 
are based on incidence matrices (Gotelli 2000, Leibold and 
Mikkelson 2002). Th ese models diff er in susceptibility to 
errors of type I (rejecting the null hypothesis when it is true) 
and type II (failing to reject the null hypothesis when it is 
false) that arise from row and column constraints associated 
with randomization procedures. In the original methodology 
(Leibold and Mikkelson 2002), two null model options that 
represent ends of a spectrum from highly liberal (Random 0) 
to highly conservative (Random 4) were used for demonstra-
tion purposes. Random 0 assigns equiprobable occurrences 
throughout the matrix. Because null models such as this 
have little structure, they are highly prone to type I errors 
(Gotelli 2000). In contrast, Random 4 fi xes row and column 
totals (i.e. species occurrences and site richnesses) to equal 
empirical values. Highly constrained null models such as this 
may incorporate the ecological mechanisms under examina-
tion, which can create an unrealistically small null space and 
an analysis with little statistical power, resulting in a high 
likelihood of type II errors (Gotelli and Graves 1996). Th e 
magnitude of these problems with fi xed-fi xed null models is 
contingent on matrix size, with power decreasing and type II 
error rates increasing with decreasing matrix size (Hausdorf 
and Hennig 2007, Ulrich and Gotelli 2007). Th ese prob-
lems may arise because the null model does not allow suf-
fi cient randomization of matrix aspects associated with the 
structure under evaluation, resulting in exceedingly low sta-
tistical power and a high susceptibility to type II errors. Th is 
problem also can occur with the application of a fi xed-fi xed 
null model in analyses o coherence (Leibold and Mikkelson 
2002). In addition to matrix size, matrix fi ll can aff ect the 
power of null model approaches (Ulrich and Gotelli 2007). 
Importantly, the total number of species occurrences in each 
of these null model approaches is constrained to equal the 
total number of occurrences in the empirical metacommu-
nity (i.e. matrix fi ll is fi xed). 

 An ecological concern when selecting a null model is that 
it only allows the factor of interest to occur at random, while 
constraining all other parameters. Th e range of a species is 
defi ned by the number and identity of sites at which the 
species occurs, and occurrences are determined by species-
specifi c characteristics that combine to defi ne the ranges of 
species. Consequently, these factors (number and location of 
species occurrences) should be allowed to occur at random in 
the null model when assessing the degree of range coherence 
in a metacommunity. In contrast, site characteristics (area, 
number of habitats, sampling intensity) and passive sam-
pling aff ect the number of species (though not necessarily 
the identity of those species) that are recorded from each site. 
For these reasons, we suggest a null model that constrains 
species richness of each site to equal empirical richness, with 
equiprobable occurrences for each species. Th is null model 
has a more desirable combination of type I and type II error 
properties than does Random 0 or Random 4 (Gotelli and 
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Graves 1996, Gotelli 2000) and has been applied success-
fully to analyses of coherence (Presley et al. 2009, Presley 
and Willig 2010). Moreover, we view each type of error 
(I and II) to be of equal concern and do not recommend the 
use of highly conservative null models that are more likely to 
classify truly coherent metacommunities as random. 

 Coherence is measured by counting the number of 
embedded absences (i.e. interruptions in the distributions 
of species or in the compositions of sites) in a matrix that 
has been reordered via reciprocal averaging. In an ordinated 
matrix, absences that have a presence toward each extreme 
in a row or in a column are termed embedded absences. A 
metacommunity with perfect coherence has no embedded 
absences. Th e number of embedded absences is compared 
statistically to a null distribution created by randomizing 
elements of the observed data matrix, counting the num-
ber of embedded absences, and repeating the procedure 
for 1000 iterations. If the number of empirical embedded 
absences is not signifi cantly diff erent from that expected by 
chance, species do not respond to the same latent environ-
mental gradient and the metacommunity is deemed to have 
random structure. Metacommunities with more embedded 
absences than expected by chance (negative coherence) have 
checkerboard distributions (Fig. 1), with strong interspecifi c 
competition that results in mutual exclusion as the implied 
structuring mechanism. Metacommunities with positive 
coherence have fewer embedded absences than expected 
by chance and include a number of structures that are dis-
tinguished via assessment of range turnover and boundary 
clumping. Importantly, the validity of conclusions concern-
ing range turnover or boundary clumping is contingent 
on an accurate assessment of coherence. In a non-coherent 
metacommunity, for which a single gradient is not impor-
tant to a preponderance of species, occurrences and absences 
are scattered along the latent environmental gradient such 
that metrics of species turnover and range boundary clump-
ing do not eff ectively refl ect the concepts that they represent 
in coherent metacommunities. 

 Species range turnover is measured as the number of times 
one species replaces another between two sites (i.e. number 
of replacements) for each possible pair of species and for each 
possible pair of sites. A replacement between two species 
(A and B) occurs when the range of A extends beyond that of 
B at one end of the gradient and the range of B extends beyond 
that of A at the other end of the gradient. Because replace-
ments associated with embedded absences are not related to 
the primary axis of correspondence, they can be misleading 
in evaluations of turnover along that axis. Consequently, 
each species range is made perfectly coherent by  ‘ fi lling in ’  
any embedded absences prior to evaluation of turnover. Th e 
observed number of replacements in a metacommunity is 
compared to a distribution of randomly generated values 
based on a null model that randomly shifts entire ranges 
of species (Leibold and Mikkelson 2002). Signifi cantly low 
(negative) turnover is consistent with nested distributions 
(Fig. 1, 2). Signifi cantly high (positive) turnover is consistent 
with Gleasonian, Clementsian, or evenly spaced distribu-
tions, requiring analysis of boundary clumping to distinguish 
among them (Fig. 1, 2). Signifi cance of boundary clump-
ing is evaluated via a  χ  2  goodness-of-fi t test that compares 
the observed distribution to an expected (equiprobable) 



distribution of range boundary locations (Hoagland and 
Collins 1997, Leibold and Mikkelson 2002). When the 
 χ  2 -test is signifi cant, Morisita ’ s (1971) index (I) is used to 
determine if results represent clumped (I � 1.0)  boundaries, 
indicating Clementsian structure, or if results represent 
hyperdispersed (I � 1.0) boundaries, indicating evenly spaced 
distributions. Metacommunities with randomly distributed 
boundaries indicate individualistic responses of species that 
characterize Gleasonian structure. 

 In concert, analyses of coherence, turnover, and bound-
ary clumping can identify more than the six structures 
outlined here and in Leibold and Mikkelson (2002). More 
specifi cally, at least 12 possible coherent structures exist 
(Fig. 2) based on these three elements of metacommunity 
structure. Nonetheless, only four of these coherent struc-
tures have been described previously, with the remain-
ing patterns not explored or not associated with particular 
structuring mechanisms. Better resolution and distinction of 
coherent structures defi ned by combinations of range turn-
over and boundary clumping will enhance pattern recogni-
tion and coupling of pattern with mechanism.   

 Patterns of species loss in nested metacommunities 

 Classically, nested subsets describe a pattern of metacom-
munity structure in which taxa found in species-poor sites 
are subsets of those found in species-rich sites. Because the 
focus of the Leibold and Mikkelson (2002) approach is on 
  Figure 1.     Diagrammatic representation of the hierarchical approach based on analysis of elements of metacommunity structure and com-
binations of results that are consistent of each of six idealized structures (Leibold and Mikkelson 2002), three patterns of species loss for 
nested subsets, six quasi-structures, and structures of compartments within Clementsian distributions. Boxes designate statistical results; 
ovals indicate direction of non-signifi cant turnover.  
  Figure 2.     Twelve coherent metacommunity structures defi ned by range turnover and boundary clumping. Quasi-structures are shaded; 
nested structures that are distinguished by patterns of species loss are stippled. Signifi cant positive results,  � ; signifi cant negative results,  – ; 
non-signifi cant clumping, NS, non-signifi cant turnover but with more replacements than the average number in randomly generated 
metacommunities, NS ( � ); non-signifi cant turnover but with fewer replacements than the average number in randomly generated meta-
communities, NS ( � ).  
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distributions of species and not species richness of communi-
ties, nested structures describe a pattern in which the ranges 
of species with restricted distributions along an environmen-
tal gradient are contained within the ranges of species that 
are more widely distributed along the gradient. Regardless 
of the conceptual approach, the manifest structure is the 
same. Nested structures are characterized by a predictable 
pattern of species loss among sites, with species absent from 
a particular site also absent from all sites with fewer species. 
During the last two decades, many studies have documented 
empirical patterns of nestedness. Despite the apparent 
ubiquity of nested subsets, the assignment of structuring 
mechanisms to particular examples of nestedness has been 
rare. Indeed, multiple mechanisms may give rise to nested 
subsets, and assigning mechanisms to particular patterns is 
diffi  cult. However, the expected pattern of species loss along 
the gradient in a nested metacommunity may be distinct for 
each mechanism. Consequently, identifi cation of distinctive 
forms of species loss should facilitate the identifi cation of 
mechanisms associated with particular nested structures. 

 A nested metacommunity may exhibit hyperdispersed, 
stochastic, or clumped species loss among sites (Fig. 1 – 3), 
which can be distinguished via analysis of range boundary 
clumping. Each pattern of species loss in a nested meta-
community is analogous to evenly spaced, Gleasonian, or 
Clementsian structure, except that the dispersion of range 
boundaries is only at one end of the gradient. Nonetheless, 
to avoid confusion between metacommunity structures 
and patterns of species loss in nested structures, we refer to 
negative range boundary clumping in a nested structure as 
hyperdispersed species loss, non-signifi cant range boundary 
clumping in a nested structure as stochastic species loss, and 
positive range boundary clumping in a nested structure as 
clumped species loss (Fig. 2). 

 To evaluate the effi  cacy of the analysis in detecting dif-
ferences in range boundary dispersion in nested structures, 
we created all possible combinations of clumped bound-
aries in a perfectly nested metacommunity defi ned by 20 
sites and 20 species, beginning with hyperdispersed bound-
aries (Fig. 3A) and progressively increasing the clumping 
of boundaries. Because range boundaries may be clumped 
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in multiple groups, as well as in groups of diff erent sizes, 
we began with a single group of the smallest possible size 
(i.e. two clumped boundaries) and incrementally increased 
the number of clumped boundaries in that one group until 
boundaries changed from signifi cantly hyperdispersed, 
to random, to signifi cantly clumped. Similarly, we incre-
mentally increased the number and the sizes of groups 
of clumped boundaries until the progression of possible 
results was complete (i.e. from hyperdispersed, to ran-
dom, to clumped) for each permutation of numbers and 
sizes of groups (Table 1). Additional details of analyti-
cal approaches appear elsewhere (Leibold and Mikkelson 
2002, Presley et al. 2009, Presley and Willig 2010). Herein, 
analyses of coherence, turnover, and boundary clumping 
of exemplar metacommunities were conducted with algo-
rithms written in Matlab 7.5.0.342 (script fi les available 
at  � www.tarleton.edu/ ∼ higgins/EMS.htm � ). All analyses 
were performed from the  “ range ”  perspective sensu Leibold 
and Mikkelson (2002). 

 Requirements for hyperdispersed species loss in nested 
structures (Fig. 3A) were relatively stringent. Th ere are few 
ways (sometimes only one) to maximally disperse species 
boundaries in a metacommunity. In contrast, there are many 
ways that boundaries can occur at random or in clumps. Th is 
may explain why evenly spaced structures are documented 
less often than are Gleasonian or Clementsian structures, 
and also may indicate that hyperdispersed species loss in 
nested structures occur infrequently. 

 Metacommunities with only a modest number of 
clumped boundaries (from one group of four boundar-
ies to fi ve groups of two boundaries) were characterized by 
stochastic species loss (Table 1). For a metacommunity with 
nested structure to evince clumped species loss (Fig. 3C), a 
single group of six clumped boundaries (30% of species), 
fi ve groups of three clumped boundaries (involving 75% 
of species), or some intermediate combination of numbers 
of groups and sizes of groups were required (Table 1). Th e 
exemplar metacommunities (Fig. 3, Table 1) were relatively 
small, allowing only a modest amount of variation in bound-
ary location. Nonetheless, multiple instances were consistent 
with each form of species loss (Table 1), indicating that this 
  Figure 3.     Th ree perfectly nested metacommunities that exhibit diff erent patterns of species loss that can be distinguished via analysis of 
range boundary clumping. Shaded cells represent species presences. Species in metacommunity A exhibit hyperdispersed species loss (no 
clumping), species in metacommunity B exhibit stochastic species loss (one group of three and four groups of two clumped boundaries), 
and species in metacommunity C exhibit clumped species loss (fi ve clumped boundaries in each of four groups). Morisita ’ s index, I.  



Total 
number 
of clumped 
groups

Number of 
clumped 

boundaries in 
other groups

Number of clumped boundaries in fi rst group

2 3 4 5 6

I p I p I p I p I p

One group
0  0.12  �  0.001  0.35  0.0068 0.71 0.1999 1.18 0.2742  1.76  0.026 

Two groups
2  0.24  �  0.001  0.47  0.0335 0.82 0.3329 1.29 0.1847  1.88  0.015 
3  0.47  0.0335 0.71 0.1999 1.06 0.3888 1.53 0.0745  2.12  0.005 
4 0.82 0.3329 1.06 0.3888 1.41 0.1194  1.88  0.015  2.47  �  0.001 
5 1.29 0.1847 1.53 0.0745  1.88  0.015  2.35  0.0013  2.94  �  0.001 

Three groups
2, 2  0.35  0.0068 0.59 0.0964 0.94 0.4762 1.41 0.1194  1.89  0.013 
2, 3 0.59 0.0964 0.82 0.3329 1.18 0.2742  1.65  0.0449  2.24  0.003 
2, 4 0.94 0.4762 1.18 0.2742 1.53 0.0745  2.00  0.0084  2.59  �  0.001 
2, 5 1.41 0.1194  1.65  0.0449  2.00  0.0084  2.47  �  0.001  3.06  �  0.001 
3, 3 0.82 0.3329 1.06 0.3888 1.41 0.1194  1.88  0.015  2.47  �  0.001 
3, 4 1.18 0.2742 1.41 0.1194  1.76  0.0263  2.24  0.0025  2.82  �  0.001 

Four groups
2, 2, 2  0.47  0.0335 0.71 0.1999 1.06 0.3888 1.53 0.0745  2.12  0.005 
2, 2, 3 0.71 0.1999 0.94 0.4762 1.29 0.1847  1.76  0.026  2.35  0.001 
2, 2, 4 1.06 0.3888 1.29 0.1847  1.65  0.0449  2.12  0.0046  2.71  �  0.001 
2, 3, 3 0.94 0.4762 1.18 0.2742 1.53 0.0745  2.00  0.0084  2.59  �  0.001 
2, 3, 4 1.29 0.185 1.53 0.075  1.88  0.015  2.35  0.001  2.94  �  0.001 
3, 3, 3 1.18 0.274 1.41 0.119  1.76  0.026  2.24  0.003  2.82  �  0.001 

Five groups
2, 2 ,2, 2 0.59 0.096 0.82 0.333 1.18 0.274 1.56 0.062  2.24  0.003 
2, 2, 2, 3 0.82 0.333 1.06 0.389 1.41 0.119  1.88  0.015  2.47  �  0.001 
2, 2, 2, 4 1.18 0.274 1.41 0.119  1.76  0.026  2.24  0.003  2.82  �  0.001 
2, 2, 3, 3 1.06 0.389 1.29 0.185  1.65  0.045  2.12  0.005  2.71  �  0.001 
2, 3, 3, 3 1.29 0.185 1.53 0.075  1.88  0.015  2.35  0.001  2.94  �  0.001 
3, 3, 3, 3 1.53 0.075  1.76  0.026  2.12  0.005  2.59  �  0.001  3.18  �  0.001 
test is capable of distinguishing among these three forms of 
species loss in nested or in quasi-nested structures. 

 In a metacommunity context, patterns of species loss for 
nested structures evaluate the form of species loss only along 
the latent environmental gradient, which may not be com-
pletely coincident with gradients of species richness, as in 
classical analyses of nestedness. As such, appropriate expla-
nations for species loss must be restricted to environmental 
variation associated with the latent gradient (i.e. order of 
sites along primary axis of correspondence). Indeed, ascrib-
ing mechanisms to explain nested patterns along gradients 
of richness may be diffi  cult if an obvious environmental 
gradient is not correlated with species richness. For nested 
subsets, reciprocal averaging discerns inter-site variation in 
response to a latent environmental gradient. Th is directly 
places analyses of nested structures in an environmental con-
text, possibly enhancing the ability of researchers to associate 
mechanisms with nested structures. 

 To demonstrate how analysis of species loss can provide 
insight, we use a hypothetical fauna from an elevational 
gradient as a model. Environmental characteristics (e.g. tem-
perature, precipitation, vegetational composition) to which 
species respond change with elevation in predictable fash-
ions. Although elevational changes in abiotic characteristics 
and associated vegetation are predictable, they diff er from 
each other in form. Abiotic characteristics generally change 
in a gradual fashion with elevation (Jacobson 2005), whereas 
vegetation associations have more-or-less discrete boundar-
ies (ecotones) between habitat types (Whittaker 1956, 1960, 
1965, Terborgh 1971, 1977). Along this hypothetical eleva-
tional gradient, all species occur at lower elevations where 
environmental conditions are less stressful and resources are 
multifarious, with species richness declining with increases 
in elevation, resulting in nested structure. If species-specifi c 
environmental tolerances determine species range boundar-
ies, the metacommunity likely will evince stochastic species 
loss (Fig. 3B) or perhaps hyperdispersed species loss (Fig. 3A) 
if tradeoff s between competitive ability and environmental 
tolerance exist. If habitat specializations determine the loca-
tions of species range boundaries, the metacommunity likely 
will evince a clumped pattern of species loss, with range 
boundaries clumped and coincident with ecotones (Fig. 3C). 
In an empirical example similar to this hypothetical system, 
the bat metacommunity on an eastern slope of the Andes 
was nested with clumped species loss (Presley et al. unpubl.). 
In addition, range boundaries of bats were clumped at eco-
tones, revealing a distinct pattern of species loss associated 
with changes in habitat type along the elevational gradient. 
   Table 1. Assessments of boundary clumping (Morisita’s index, I, and associated p-values) for perfectly nested metacommunities comprising 
20 species and 20 sites. Exemplars differ in the number of groups of clumped range boundaries and in the number of species boundaries 
clumped within each group. For each row of analyses, the number of boundaries in the fi rst group increases from left to right. Signifi cant 
(p � 0.05) results with values of I � 1.0 indicate hyperdispersed species loss and are in italics. Signifi cant results with values of I � 1.0 
indicate clumped species loss and are in bold. 
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Without consideration of patterns of species loss, ecologi-
cal understanding of Andean bat metacommunity structure 
would have been less complete.   

 Quasi-structures 

 Metacommunities with positive coherence and non-
signifi cant turnover have a non-random structure that has 
not been considered in the literature. Nonetheless, these 
structures are quite common. For example, 9 of the 24 
coherent metacommunities in Leibold and Mikkelson 
(2002) evinced this pattern. Other studies have detected 
this pattern in a variety of taxa, including snails in a tropi-
cal rainforest (Presley unpubl.), moths in temperate forests 
(Kusch et al. 2005), birds in montane tropical habitats 
(Presley et al. unpubl.), bats in various biomes of Paraguay 
(Presley et al. 2009), and bats inhabiting islands of the 
Caribbean (Presley and Willig 2010). 

 We propose the recognition of six quasi-structures, each of 
which has a foundation that is consistent with the conceptual 
underpinning of Clementsian, evenly spaced, or Gleasonian 
distributions, or with those of each form of species loss for 
nested distributions. Each quasi-structure has the same basic 
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characteristics as its associated idealized structure, except that 
range turnover is indistinguishable from random (Fig. 2). 
Although some expectation of turnover is associated with 
non-random structures, signifi cantly positive or negative 
turnover is not a fundamental characteristic of Gleasonian, 
evenly spaced, or nested distributions. For example, because 
distributions of restricted-range species are contained within 
those of wide-ranging species in nested structures, one would 
expect nested distributions to have negative turnover (i.e. 
fewer replacements than the average in randomly generated 
matrices); however, turnover need not result in statistical sig-
nifi cance for a nested pattern to best describe a metacom-
munity. Similarly, some positive turnover is a fundamental 
character of Gleasonian or evenly spaced distributions, but 
statistically signifi cant positive turnover is not required for 
such patterns to best describe a metacommunity. Nonetheless, 
the level of signifi cance associated with turnover may indicate 
the strength of structuring mechanisms, with quasi-structures 
resulting from weaker structuring forces than those eff ecting 
structures in which turnover is signifi cant. 

 A coherent metacommunity with turnover that is ran-
dom, but with fewer replacements than the average number 
that occurs in randomly generated metacommunities 
  Figure 4.     Four metacommunities (20 species and 20 sites) that evince Clementsian structure (perfect coherence, positive turnover, and 
clumped range boundaries; Table 2), but that exhibited diff erent types of structure within compartments. Shaded cells represent species 
presences. Compartments within each metacommunity are delineated by dashed horizontal lines. Species in metacommunity A exhibit 
nested structure (negative turnover) with evenly spaced species loss in each compartment, species in metacommunity B exhibit Clementsian 
structure (positive turnover and clumped boundaries) in each compartment, species in metacommunity C exhibit Gleasonian structure 
(positive turnover and randomly distributed boundaries) in each compartment, and species in metacommunity D exhibit Clementsian 
(compartment 1), nested (compartment 2), or Gleasonian (compartment 3) structure (Table 2).  



Species turnover

Replacements Boundary clumping

Metacommunity Compartment Observed Mean p I p Structure

A 2303 2007  0.029 2.21  �   0.001 Clementsian
1    0   25  0.015 0.00  �   0.001 nested
2    0   13  0.033 0.00  �   0.001 nested
3    0   23  0.017 0.00  �   0.001 nested

B 2816 2544  0.030 1.74  0.001 Clementsian
1   72   36  0.006 2.14  0.028 Clementsian
2   54   27  0.013 4.00  �   0.001 Clementsian
3  108   52  0.003 5.00  �   0.001 Clementsian

C 4110 3268  0.012 1.45  0.026 Clementsian
1  420  208  �   0.001 1.58 0.064 Gleasonian
2  390  222  0.007 1.33 0.139 Gleasonian

D 2404 2128  0.020 1.78  �   0.001 Clementsian
1   54   27  0.014 4.00  �   0.001 Clementsian
2    0   24  0.020 0.00  �   0.001 nested
3  103   52  0.008 1.07 0.343 Gleasonian
(i.e. non-signifi cant negative turnover), has species distri-
butions that resemble nested subsets. Because the degree 
of nestedness in such metacommunities is not strong, but 
is more consistent with nested subsets than with other ide-
alized structures, we term these structures quasi-nested. 
Similar to nested structure, quasi-nested structures may 
exhibit hyperdispersed, stochastic, or clumped species loss 
(Fig. 1 – 3). Th e remaining quasi-structures have random 
turnover with more replacements than the average number 
present in randomly generated matrices (i.e. non-signifi -
cant positive turnover). Similar to the approach for distin-
guishing among idealized structures, each of the remaining 
quasi-structures is defi ned by the degree of range boundary 
clumping (Fig. 2). 

 A coherent metacommunity with non-signifi cant posi-
tive turnover and random clumping of boundaries is con-
sistent with the individualistic responses of Gleasonian 
structure. Individualistic responses of species with smaller 
niche breadths (relative to the extent of the gradient) likely 
result in greater positive turnover and Gleasonian structure, 
whereas species with larger niche breadths may result in non-
signifi cant positive turnover and quasi-Gleasonian structure. 
Turnover is not a defi ning characteristic of Gleason ’ s concept 
of community organization; therefore, each of these struc-
tures represents a manifestation of the same phenomenon. 

 A coherent metacommunity with non-signifi cant positive 
turnover and negative boundary clumping is consistent with 
the evenly spaced distributions generated by tradeoff s associ-
ated with strong interspecifi c competition. Th e amount of 
niche space in which each species is competitively domi-
nant will determine the degree of turnover in the metacom-
munity. Th e amount of positive turnover in evenly spaced 
structures is determined by the proportion of the gradient 
in which each species is dominant. Consequently, species 
are dominant along larger proportions of the gradient in 
evenly-spaced structures than are species in quasi-evenly 
spaced structures. 

 A coherent metacommunity with non-signifi cant posi-
tive turnover and positive boundary clumping has quasi-
Clementsian structure. Often, range boundaries for quasi-
Clementsian structures are clumped at the termini of the 
latent environmental gradient, with the majority of species 
spanning a large portion of the gradient. In such cases, this 
quasi-structure indicates that a metacommunity is charac-
terized by compositional unity along most of the gradient. 
Quasi-Clementsian structures may arise because of trunca-
tion in two circumstances. If variation in environmental 
characteristics along an empirical gradient is small compared 
to the niche breadths of species in the metacommunity, a 
quasi-Clementsian structure likely will arise with most spe-
cies occupying most of the empirical gradient. Alternatively, 
if only a part of an empirical gradient is sampled, then any 
observed structure may be an artifact as environmental dis-
tributions of species may extend beyond the bounds of the 
truncated gradient. Th e investigator must determine the 
plausibility of each potential reason for distributions that 
appear to be truncated.   

 A hierarchical approach for Clementsian 
metacommunities 

 Th e crucial aspects of scale in the context of metacommunity 
analysis are that the focus (i.e. site) and extent (i.e. meta-
community) must be consistent with the conceptual issues 
that are explored in the analysis, and with spatial variation 
in environmental characteristics addressed via supple-
mentary analyses. Moreover, the scale at which structur-
ing mechanisms operate must be consistent with the scale 
used to observe patterns. Focal scale and extent are critical a 
priori considerations because metacommunities may evince 
  Table 2.  Results of analyses of species turnover and boundary clumping (Morisita’s index, I) for each of four illustrative metacommunities 
and associated extents (Fig. 4).  Signifi cant (p � 0.05) results are bold.  
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distinctive structures at multiple spatial extents, with dif-
ferent underlying mechanisms associated with each extent 
(Presley and Willig 2010). 

 Clementsian metacommunities are defi ned by coinci-
dence of species boundaries, with their locations defi ning 
the limits along the environmental gradient for sites that 
have shared species compositions. Such groups of sites are 
termed compartments (Lewinsohn et al. 2006). Because 
compartments form self-similar groupings of sites and likely 
represent non-arbitrary units for analysis along environ-
mental gradients, the structure of each compartment may 
be analyzed independently of each other and of the larger 
extent(s) within which it is embedded. Indeed, metacom-
munities may evince an overall structure that results from 
the agglomeration of distinctive structures associated with 
multiple compartments along the environmental gradient 
(Fig. 4). Visual inspection of the ordinated matrix and a vec-
tor of the number of range boundaries that occur at each site 
facilitate the determination of the limits of each compart-
ment. More specifi cally, large numbers of range boundaries 
at sites indicate likely locations of turnover (e.g. ecotones) 
between compartments. Alternatively, natural biogeographic 
divisions may be used as a basis for identifying compart-
ments. In some cases, identifi cation of compartments may 
be diffi  cult. Once identifi ed, analyses of metacommunity 
structure (i.e. coherence, turnover, boundary clumping) 
within each compartment can provide additional informa-
tion about ecological organization. 

 To demonstrate hierarchical structure of Clementsian 
metacommunities, we constructed four exemplars, each 
with Clementsian structure along the full gradient (Table 2, 
Fig. 4). For simplicity, each of the exemplars was created 
with perfect coherence (i.e. zero embedded absences), which 
does not aff ect analyses of range turnover or range boundary 
clumping. To make delineation of constituent compartments 
clear, no species occurred in more than one compartment 
within each metacommunity. Exemplars diff ered in the 
structure evinced by each compartment, including nested 
(Fig. 4A), Clementsian (Fig. 4B), Gleasonian (Fig. 4C), or 
a mix of structures (Fig. 4D, Table 2). A similar hierarchi-
cal approach has been proposed for Clementsian structures 
in which each compartment has nested structure (as in 
Fig. 4A) and was called compound structures (Lewinsohn 
et al. 2006); however, this concept can be extended to 
include any type of structure, not just those that are nested. 

 Hierarchical structures are not simply a theoretical 
construct. Presley and Willig (2010) analyzed metacom-
munity structure of Caribbean bats at multiple spatial 
extents that were defi ned by biogeographic characteristics. 
At the extent of the entire Caribbean Basin, bats exhibited 
Clementsian structure with distinctive species composi-
tions associated with each of three biogeographic regions 
(Bahamas, Greater Antilles and Lesser Antilles). Moreover, 
each biogeographic region evinced a unique structure: the 
Bahaman metacommunity exhibited quasi-Gleasonian 
structure, the Greater Antillean metacommunity exhibited 
nested structure (with clumped species loss), and the Lesser 
Antillean metacommunity exhibited Clementsian structure 
(not unlike Fig. 4D). Distinct mechanisms were associated 
with structure at each extent. More specifi cally, proxim-
ity and number of mainland sources of colonization were 
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invoked to explain Clementsian structure for the entire 
Caribbean Basin, whereas species-specifi c environmental 
tolerances, habitat specializations, and physical attributes 
of islands were identifi ed as likely structuring mechanisms 
for compartments (for details see Presley and Willig 2010). 
Similarly, Lewinsohn et al. (2006) evaluated the structure of 
insect–plant interactions in southeastern Brazil and found 
Clementsian structure (compartmentation) in which each 
compartment exhibited a nested pattern of species interac-
tions. In each case, the hierarchical and scale-dependent 
approach revealed aspects of structure that would not have 
been evident otherwise.   

 Concluding statements 

 Development of conceptual frameworks and analytical tools 
to evaluate metacommunity structure is ongoing. A multidi-
mensional continuum of structure exists in which idealized 
structures based on distinct conceptual foundations represent 
only a fraction of possible structures. Nested patterns are eas-
ily identifi ed, but may represent multiple structures (each 
with unique conceptual underpinnings) that masquerade as 
one. Identifi cation of patterns of species loss in nested struc-
tures facilitates the association of mechanism with pattern. 
Th e introduction of quasi-structures increases the volume of 
the structural continuum that is associated with particular 
concepts. Finally, the ability to detect and interpret emergent 
properties of species distributions, such as metacommunity 
structure, depends on recognition of appropriate scales of 
analysis. Because multiple mechanisms may operate at dif-
ferent spatial scales to determine compositions of local com-
munities, analysis of metacommunity structure at multiple 
scales or extents may be required to comprehensively under-
stand the dynamics of metacommunity composition. In 
addition to analysis of metacommunity structure, this con-
ceptual framework may be applied to other types of systems 
such as plant-animal interaction assemblages (Lewinsohn 
et al. 2006) or networks of community-level interspecifi c 
interactions (Burns 2007). 
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